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CSE140:  Components and Design Techniques 

for Digital Systems  

 

Introduction 

Prof. Tajana Simunic Rosing 
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Welcome to CSE 140! 

• Instructor:  Tajana Simunic Rosing 

• Email: tajana@ucsd.edu; please put CSE140 in the subject line 

• Office Hours: T 3:30-4:30pm, Th 12:45-1:45pm; CSE 2118 
 

• Instructor’s Assistant: Sheila Manalo   

– Email: shmanalo@ucsd.edu 

– Phone: (858) 534-8873  
 

• Discussion session: F 4:00-4:50am, CENTR 119 

 

• TAs:  (office hrs and emails to be updated at course website shortly) 

Lu, Jingwei jlu@cs.ucsd.edu;  Th 10-11am, Sunday 7-8pm 
Mast, Ryan Andrew rmast@ucsd.edu; Wed 4-5pm, B250 
Nath, Rajib Kumar rknath@ucsd.edu; Tu 11am-12pm 
Supanekar, Ketan Pranav ksupanek@eng.ucsd.edu ; Mon 7-8pm 
 

• Class Website: 

– http://www.cse.ucsd.edu/classes/sp13/cse140-a/  

 

• Grades: http://ted.ucsd.edu 

mailto:tajana@ucsd.edu
mailto:shmanalo@ucsd.edu
mailto:jlu@cs.ucsd.edu
mailto:rmast@ucsd.edu
mailto:rknath@ucsd.edu
mailto:ksupanek@eng.ucsd.edu
http://www.cse.ucsd.edu/classes/sp13/cse140-a/
http://www.cse.ucsd.edu/classes/sp13/cse140-a/
http://www.cse.ucsd.edu/classes/sp13/cse140-a/
http://www.cse.ucsd.edu/classes/sp13/cse140-a/
http://www.cse.ucsd.edu/classes/sp13/cse140-a/
http://ted.ucsd.edu/
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Course Description 

• Prerequisites: 
– CSE 20 or Math 15A, and CSE 30.  

– CSE 140L must be taken concurrently  

• Objective: 
– Introduce digital components and system design concepts 

• Grading 
– Homeworks (~7): 10% 

• HW picked up at beginning of the class, ZERO pts if late 

– Three exams: #1 – 25%; #2 – 30%; #3 – 35% 

• No makeup exams; exceptions only for: 
– documented illness (signed doctor’s statement), death in the family 

• Third exam will occur at the final time, but will be the same length 
as the other midterms, so you will have 1hr 20min to complete it 

• Regrade requests:  
– turn in a written request at the end of the class where your work (HW or 

exam) is returned 
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Textbook and Recommended Readings 

• Required textbook: 

– Digital Design & 

Computer Architecture, 

2nd Edition by David & 

Sarah Harris 

 

• Recommended textbook: 

– Digital Design by F. Vahid, & 

Contemporary Logic Design by 

R. Katz & G. Borriello 

 

 

• Lecture slides are derived from 

the slides designed for all three 

books 



5 

Why Study Digital Design? 

• Look “under the hood” of computers 

– Become a better programmer when 

aware of hardware resource issues 

• Everyday devices becoming digital 

– Enables: 

• Better devices: Better sound recorders, 

cameras, cars, cell phones, medical 

devices,... 

• New devices: Video games, PDAs, ... 

– Known as “embedded systems” 

• Thousands of new devices every year 

• Designers needed: Potential career 

1995 

Portable 
music players 

1997 

Satellites 

1999 

Cell phones 

2001 

DVD 
players 

Video 
recorders 

Musical 
instruments 

2003 

Cameras TVs ??? 

2005 2007 
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When Microprocessors Aren’t Good Enough 

• With microprocessors so easy to 
work with, cheap, and available, 
why design a digital circuit? 

– Microprocessor may be too slow 

– Or too big, power hungry, or costly 

( a ) 

Micro- 

processor 

(Read, 

Compress, 

and Store) Memory 

Image Sensor 

( b ) 

( c ) 

Sample digital camera task execution times (in 

seconds) on a microprocessor versus a digital 

circuit: 

Read 

circuit 
Compress 

circuit 

Memory 
Store 

circuit 

Image Sensor 

Compress 

circuit 

Microprocessor 

(Store) Memory 

Image Sensor Read 

circuit 

Task Microprocessor Custom 

Digital Circuit 

Read 5 0.1 

Compress 8 0.5 

Store 1 0.8 

Execution time 
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REGIST

ER 1 
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REGIST

ER 2 
WRITE 

REGIST

ER WRI

TE 

DAT

A 

READ 

DATA 

1 

READ 

DATA 

2 

MUX 

1 

0 

JUMP 

<< 2 I[25-0] JMP ADDRESS [25-0] 

PC+4 [31-28] JMP ADDRESS [31-0] 

The big picture 

• We start with Boolean algebra  Y = A and B 

• We end with a hardware design of a simple CPU 

 

 

 

 

 

 

 

 

 

• What’s next?  CSE141 – more complex CPU architecture   
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Outline 

• Number representations 
– Analog vs. Digital 

– Digital representations: 

• Binary, Hexadecimal, Octal 

– Binary addition, subtraction, multiplication, division 

• Boolean algebra 
– Properties 

– How Boolean algebra can be used to design logic circuits 

• Switches, MOS transistors, Logic gates 
– What is a switch 

– How a transistor operates 

– Building logic gates out of transistors 

– Building larger functions from logic gates 

 

 Textbook chapter 1 
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CSE140:  Components and Design Techniques 

for Digital Systems  

 

Number representations & 

Binary arithmetic 

Tajana Simunic Rosing 
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What Does “Digital” Mean? 
• Analog signal 

– Infinite possible values 

• Ex: voltage on a wire 

created by microphone 

v
al

u
e 

time 

v
al

u
e 

time 

analog  

signal 

3 4 2 1 

2 digital  

signal 

• Digital signal 
– Finite possible values 

• Ex: button pressed on a 
keypad 

0 

1 

2 

3 

4 
Possible values: 

1.00, 1.01, 2.0000009,  

... infinite possibilities 

Possible values: 

0, 1, 2, 3, or 4. 

That’s it.  
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How Do We Encode Data into Binary? 

• Some inputs are inherently binary 

– Button: not pressed   (0),  

   pressed (1) 

• Some inputs are inherently digital 

– Just need encoding into binary 

– e.g., multi-button input: encode 
red=001, blue=010, ... 

• Other inputs are analog 

– Need analog-to-digital conversion 

 

 

0 

button 

1 

g r een black blue r ed 

0 0 0 

r ed 

0 1 0 

g r een black blue 

1 0 0 

g r een black blue r ed 

temperature 
sensor 

air 

0 0 1 1 0 0 0 0 

33 

degrees 

sensors and 
other inputs 

Digital System 

actuators and 
other outputs 

A2D 

D2A 

analog 
phenomena 

electric 
signal 

digital 
data 

digital 
data 

electric 
signal 

digital 
data 

digital 
data 

Binary digIT = BIT 

Has 2 values: 0 & 1  
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A/D conversion & digitization benefits 

• Analog signal (e.g., audio) 
may lose quality 

– Voltage levels not 
saved/copied/transmitted 
perfectly 

• Digitized version enables 
near-perfect save/cpy/trn.  

– “Sample” voltage at 
particular rate, save 
sample using bit 
encoding 

– Voltage levels still not 
kept perfectly 

– But we can distinguish 
0s from 1s 

time 
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time 
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d2a 

Let bit encoding be:  

  1 V: “01” 

  2 V: “10” 

  3 V: “11” 

time 

Can fix -- easily distinguish 0s 

and 1s, restore 

0 

1 

Digitized signal not 

perfect re-creation, 

but higher sampling  

rate and more bits per  

encoding brings closer. 
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Encoding Text: ASCII, Unicode 

• ASCII: 7- (or 8-) bit 

encoding of each letter, 

number, or symbol 

• Unicode: Increasingly 

popular 16-bit bit encoding 

– Encodes characters from 

various world languages 

1010010 

1010011 

1010100 

1001100 

1001110 

1000101 

0110000 

0101110 

0001001 

R 

S 

T 

L 

N 

E 

0 

. 
<tab> 

S ymbol En c oding 

1110010 

1110011 

1110100 

1101100 

1101110 

1100101 

0111001 

0100001 

0100000 

r 

s 

t 

l 

n 

e 

9 

 ! 
<spa c e> 

S ymbol En c oding 

What does this ASCII bit sequence represent? 

1010010 1000101 1010011 1010100 
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Encoding Numbers 

• Each position represents a 
quantity; symbol in position 
means how many of that 
quantity 
– Base ten (decimal) 

• Ten symbols: 0, 1, 2, ..., 8, and 9 

• More than 9 -- next position 

– So each position power of 10 

• Nothing special about base 10 -- 
used because we have 10 
fingers 

– Base two (binary) 

• Two symbols: 0 and 1 

• More than 1 -- next position 

– So each position power of 2 

2 4 2 3 2 2 

1 0 1 

2 1 2 0 

10 4 10 3 10 2 

5 2 3 

10 1 10 0 
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Bases Sixteen & Eight 

• Base sixteen 
– nice because each position represents four 

base two positions 

– Used as compact means to write binary 
numbers 

– Basic digits: 0-9, A-F 

– Known as hexadecimal, or just hex 

• Base eight 

– Used in some digital designs 

– Each position represents three base two 
positions 

– Basic digits: 0-7 

16 4 16 3 16 2 

8 A F 

8 

1000 1010 1111 

A F 

16 1 16 0 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

0 

1 

2 

3 

4 

5 

6 

7 

h e x bina r y 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

8 

9 

A 

B 

C 

D 

E 

F 

h e x bina r y 

Write  11110000 in hex 

Write   11110000 in octal 
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0000 

0111 

0011 

1011 

1111 
1110 

1101 

1100 

1010 

1001 

1000 
0110 

0101 

0100 

0010 

0001 

+0 

+1 

+2 

+3 

+4 

+5 

+6 

+7 –0 

–1 

–2 

–3 

–4 

–5 

–6 

–7 

Sign and magnitude 

• One bit dedicate to sign (positive or negative) 

– sign: 0 = positive (or zero), 1 = negative 

• Rest represent the absolute value or magnitude 

– three low order bits: 0 (000) thru 7 (111) 

• Range for n bits 

– +/– 2n–1 –1  (two representations for 0) 

• Cumbersome addition/subtraction  

– must compare magnitudes 

to determine the sign of the result 
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2s complement 

• If N is a positive number, then the negative of N (its 2s complement or 

N* ) is bit-wise complement plus 1 

–  7* is -7 :   0111 -> 1000 + 1 = 1001 (-7) 

– -7* is  7:    1001 -> 0110 + 1 = 0111 ( 7) 

+0 

+1 

+2 

+3 

+4 

+5 

+6 

+7 –8 

–7 

–6 

–5 

–4 

–3 

–2 

–1 

0000 

0111 

0011 

1011 

1111 
1110 

1101 

1100 

1010 

1001 

1000 
0110 

0101 

0100 

0010 

0001 



2s complement addition and subtraction 

18 

+0 

+1 

+2 

+3 

+4 

+5 

+6 

+7 –8 

–7 

–6 

–5 

–4 

–3 

–2 

–1 

0000 

0111 

0011 

1011 

1111 
1110 

1101 

1100 

1010 

1001 
1000 

0110 

0101 

0100 

0010 

0001 
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Detecting Overflow: Method 1 

• Assuming 4-bit two’s complement numbers, one can detect overflow 
by detecting when the two numbers’ sign bits are the same but are 
different from the result’s sign bit 

– If the two numbers’ sign bits are different, overflow is impossible 

• Adding a positive and negative can’t exceed the largest magnitude positive or 
negative 

• Simple circuit 

– overflow = a3’b3’s3 + a3b3s3’ 

0 1 1 1 

1 0 0 0 

+ 0 0 0 1 

sign bits 

overflow 

( a ) 

1 1 1 1 

0 1 1 1 

+ 0 1 0 0 

overflow 

( b ) 

1 0 0 0 

1 1 1 1 

+ 1 0 1 1 

no overflow 

( c ) 

If the numbers’ sign bits have the same value, which 

differs from the result’s sign bit, overflow has occurred. 
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Detecting Overflow: Method 2 

• Even simpler method: Detect difference between carry-in to sign bit 
and carry-out from sign bit 

• Yields a simpler circuit: overflow = c3 xor c4 = c3 c4’ + c3’ c4 

0 1 1 

1 1 1 

1 

1 0 0 1 0 0 0 

+ 0 0 0 1 

overflow 

( a ) 

1 1 1 

0 0 0 

1 

0 1 1 1 

+ 0 1 0 0 

overflow 

( b ) 

1 0 0 

0 0 0 

0 

1 1 1 1 

+ 1 0 1 1 

no overflow 

( c ) 

If the carry into the sign bit column differs from the 

carry out of that column, overflow has occurred. 
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Multiplication of positive binary numbers 

• Generalized representation of multiplication by hand 
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Division of positive binary numbers 

• Repeated subtraction 

– Set quotient to 0 

– Repeat while dividend >= 

divisor 

• Subtract divisor from dividend 

• Add 1 to quotient 

– When dividend < divisor: 

• Reminder = dividend 

• Quotient is correct 

Dividend   Quotient   

101 - 0 + 

10   1   

11 - 1 + 

10   1   

1 10 

Example:  

• Dividend: 101; Divisor: 10 
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Summary of number representation 

• Conversion between basis 

– Decimal 

– Binary 

– Octal 

– Hex 

• Addition & subtraction in binary 

– Overflow detection 

• Multiplication 

– Partial products 

• For demo see: 
http://courses.cs.vt.edu/~cs1104/BuildingBlocks/multiply.010.html 

• Division 

– Repeated subtraction 

• For demo see:  
http://courses.cs.vt.edu/~cs1104/BuildingBlocks/Binary.Divide.html 

 

http://courses.cs.vt.edu/~cs1104/BuildingBlocks/multiply.010.html
http://courses.cs.vt.edu/~cs1104/BuildingBlocks/Binary.Divide.html
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CSE140:  Components and Design Techniques 

for Digital Systems  

 

 Boolean algebra 

Tajana Simunic Rosing 



Boolean algebra 

– B = {0, 1}  

– Variables represent 0 or 1 only 

– Operators return 0 or 1 only 

– Basic operators 

• • is logical AND:  a AND b returns 1 only when both a=1 and b=1 

• +  is logical OR:    a OR b returns 1 if either (or both) a=1 or b=1 

• ’ is logical NOT:  NOT a returns the opposite of a (1 if a=0, 0 if a=1) 

    AND              OR                          NOT                           BUF 

 

 

 

– Derived operators:  

NAND                        NOR                     XOR                 XNOR 

a 

0 

0 

1 

1 

b 

0 

1 

0 

1 

AND 

0 

0 

0 

1 

a 

0 

0 

1 

1 

b 

0 

1 

0 

1 

OR 

0 

1 

1 

1 

a 

0 

1 

NOT 

1 

0 

a • b a+b 

a’ 

a 

0 

0 

1 

1 

b 

0 

1 

0 

1 

NAND a 

0 

0 

1 

1 

b 

0 

1 

0 

1 

NOR a 

0 

0 

1 

1 

b 

0 

1 

0 

1 

XOR a 

0 

0 

1 

1 

b 

0 

1 

0 

1 

XOR 

a 

0 

1 

BUF 

a 
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Representations of Boolean Functions 
2.6 

a 

a 

b 

F 

F 

Circuit 1 

Circuit 2 

( c ) 

( d ) 

English 1:   F outputs 1 when a is 0 and b is 0, or when a is 0 and b is 1. 

English 2:   F outputs 1 when a is 0, regardless of b’s value 
( a ) 

( b ) 

a 

0 

0 

1 

1 

b 

0 

1 

0 

1 

F 

1 

1 

0 

0 

T he function F 

Truth table 

Equation 2: F(a,b) = a’ 

Equation 1: F(a,b) = a’b’ + a’b 
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Examples: Converting to Boolean Functions 

• Convert the following English statements to a function 

– Q1. answer is 1 if a is 1 and b is 1.  

• Answer: F = 

– Q2. answer is 1 if either of a or b is 1.  

• Answer: F = 

– Q3. answer is 1 if both a and b are not 0.  

• Answer:  F= 

– Q4. answer is 1 if a is 1 and b is 0.  

• Answer: F = 

a 



28 

Example: Convert equation to logic gates 

• More than one way to map expressions to gates 

e.g.,  Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D))) 
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Boolean Duality 

• Derived by replacing • by +, + by •, 0 by 1, and 1 by 0 & 
leaving variables unchanged 

 

X + Y + ...  X • Y • ... 

 

• Generalized duality: 
 

f (X1,X2,...,Xn,0,1,+,•)  f(X1,X2,...,Xn,1,0,•,+) 

 

• Any theorem that can be proven is also proven for its 
dual!   Note: this is NOT deMorgan’s Law 

 

 



Boolean Axioms & Theorems 



Boolean theorems of multiple variables 
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Proving theorems 

• Using the axioms of Boolean algebra (or a truth table): 

– e.g., prove the theorem:  X • Y + X • Y’  =   X 

 

 

 

 

 

 

– e.g., prove the theorem:  X + X • Y  =   X 

distributivity  X • Y + X • Y’ =   X • (Y + Y’) 
complementarity  X • (Y + Y’)  =   X • (1) 
identity  X • (1)  =   X  

 

identity  X  +  X • Y =   X • 1  +  X • Y 
distributivity  X • 1  +  X • Y =   X • (1 + Y) 
identity  X • (1 + Y) =   X • (1) 
identity  X • (1)   =   X  
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Proving theorems example 

• Prove the following using the laws of Boolean algebra: 

– (X • Y) + (Y • Z) + (X’ • Z) =  X • Y + X’ • Z 

 (X • Y) + (Y • Z) + (X’ • Z)  

identity (X • Y) + (1) • (Y • Z) + (X’ • Z)  

complementarity (X • Y) + (X’ + X) • (Y • Z) + (X’ • Z)  

distributivity (X • Y) + (X’ • Y • Z) + (X • Y • Z) + (X’ • Z) 

commutativity (X • Y) + (X • Y • Z) + (X’ • Y • Z) + (X’ • Z) 

factoring (X • Y) • (1 + Z) + (X’ • Z) • (1 + Y) 

null (X • Y) • (1) + (X’ • Z) • (1)  

identity (X • Y) + (X’ • Z)  
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(X + Y)’ = X’ • Y’ 

NOR is equivalent to AND  

with inputs complemented 

(X • Y)’ = X’ + Y’ 

NAND is equivalent to OR  

with inputs complemented 

X Y X’ Y’ (X + Y)’ X’ • Y’ 
0 0 1 1      
0 1 1 0         
1 0 0 1      
1 1 0 0     

X Y X’ Y’ (X • Y)’ X’ + Y’ 
0 0 1 1      
0 1 1 0     
1 0 0 1      
1 1 0 0     

Proving theorems (perfect induction) 

• Using perfect induction (complete truth table): 

– e.g., de Morgan’s:  
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Completeness of NAND 

• Any logic function can be implemented using just NAND 

gates.  Why? 

– Boolean algebra: need AND, OR and NOT 
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Implement using only NAND 

• F = X’Y + Z 
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Completeness of NOR 

• Any logic function can be implemented using just NOR 

gates.  Boolean algebra needs AND, OR and NOT 
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Implement using only NOR 

• F = X’Y + Z 
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 Combinational circuit building blocks: 

Transistors, gates and timing 

Tajana Simunic Rosing 
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Switches 

• Electronic switches are the basis of 

binary digital circuits 

– Electrical terminology 

• Voltage: Difference in electric potential 

between two points 

– Analogous to water pressure 

•  Current: Flow of charged particles 

– Analogous to water flow 

• Resistance: Tendency of wire to resist 

current flow 

– Analogous to water pipe diameter 

• V = I * R  (Ohm’s Law) 

4.5 A 

4.5 A 

4.5 A 

2 ohms 

9V 

0 V 
9 V 

+ – 
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The CMOS Switches 
• CMOS circuit 

– Consists of N and PMOS transistors 

– Both N and PMOS are similar to basic switches 

– Rp ~ 2 Rn =>  PMOS in series is much slower than NMOS 

 

does not 
conduct 

0 

conducts 

1 
gate 

nMOS 

does not 
conduct 

1 
gate 

pMOS 

conducts 

0 

Silicon -- not quite a conductor or insulator: 

 Semiconductor 



• nMOS: pass 0’s well, so connect source to GND 

• pMOS: pass 1’s well, so connect source to VDD 

pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

 

 

 

Transistor Circuit Design 



V
DD

A Y

GND

N1

P1

NOT

Y = A

A Y
0 1

1 0

A Y

A P1 N1 Y 

0 

1 

 

 

 

CMOS Gates: NOT Gate 



A

B

Y

N2

N1

P2 P1
NAND

Y = AB

A B Y
0 0 1

0 1 1

1 0 1

1 1 0

A
B

Y

A B P1 P2 N1 N2 Y 

0 0 

0 1 

1 0 

1 1 

 

 

 

CMOS Gates: NAND Gate 



pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

Three input NOR gate 

CMOS gate structure:                Three-input NOR 



 

 

 

Other CMOS Gates 
Building a two-input AND gate 



Transmission Gates 

A B

EN

EN

• nMOS pass 1’s poorly 

• pMOS pass 0’s poorly 

• Transmission gate is a better switch 

– passes both 0 and 1 well 

• When EN = 1, the switch is ON: 

– EN = 0 and A is connected to B 

• When EN = 0, the switch is OFF: 

– A is not connected to B 



How to make CMOS gates 

49 



CMOS Example 

50 
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A CMOS design example 

• Implement  F and F’ using CMOS:    F=A*(B+C) 



CMOS delay: resistance 

• Resistivity 

– Function of: 

• resistivity r, thickness t : defined by technology 

• Width W, length L:  defined by designer 

– Approximate ON transistor with a resistor 

• R = r’ L/W 

• L is usually minimum; change only W 

52 

Source: Prof. Subhashish Mitra 



CMOS delay: capacitance & timing estimates 

• Capacitor 

– Stores charge Q = C V  (capacitance C; voltage V) 

– Current:  dQ/dt = C dV/dt   

• Timing estimate 

– D t = C dV/ i = C dV / (V/Rtrans) = RtransC dV/V 

• Delay: time to go from 50% to 50% of waveform 

53 

Source: Prof. Subhashish Mitra 



Charge/discharge in CMOS 

• Calculate on resistance 

• Calculate capacitance of the gates circuit is driving 

• Get RC delay & use it as an estimate of circuit delay 

– Vout = Vdd ( 1- e-t/RpC) 

• Rp ~ 2Rn 

54 

Source: Prof. Subhashish Mitra 
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Timing analysis: Inverter 

x 

0 

1 

F 

1 

0 

F x 

N O T 

x 

1 

0 

F = x’ 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 



Timing analysis in gates 

x 

y 
F 

OR 

F 
x 

y 

AND 

1 

0 

F= x or y 

1 

0 

x y 

F’ 

y 

x 

1 

0 

y 

x 

x 

y 

1 

0 

F=x & y F’ 

x 

0 

0 

1 

1 

y 

0 

1 

0 

1 

F 

1 

1 

1 

0 

x 

0 

0 

1 

1 

y 

0 

1 

0 

1 

F 

1 

0 

0 

0 



Power consumption in CMOS 

• Power = Energy consumed per unit time 
– Dynamic power consumption 

– Static power consumption 

• Dynamic power consumption: 
– Power to charge transistor gate capacitances 

– Energy required to charge a capacitance, C, to VDD  is CVDD
2 

– Circuit running at frequency f: transistors switch (from 1 to 0 or vice 
versa) at that frequency 

– Capacitor is charged f/2 times per second (discharging from 1 to 0 is 
free)   

  Pdynamic = ½CVDD
2f 

• Static power consumption 
– Power consumed when no gates are switching 

– Caused by the leakage supply current, IDD : 

                           Pstatic = IDDVDD 



Power estimate example 

• Estimate the power consumption of a tablet PC 

– VDD = 1.2 V 

– C = 20 nF 

– f = 1 GHz 

– IDD = 20 mA 
 

P = ½CVDD
2f  + IDDVDD 

    = ½(20 nF)(1.2 V)2(1 GHz)  +    

      (20 mA)(1.2 V) 

   = 14.4 W 
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Summary 

• What we covered thus far: 

– Number representations 

– Boolean algebra 

– Switches, Logic gates 

– How to build logic gates from CMOS transistors 

– Timing and power estimates 

• What is next: 

– Combinatorial logic: 

• Minimization 

• Implementations 


