
1

CSE140: Components and Design Techniques

for Digital Systems

Introduction

Prof. Tajana Simunic Rosing

2

Welcome to CSE 140!

• Instructor: Tajana Simunic Rosing

• Email: tajana@ucsd.edu; please put CSE140 in the subject line

• Office Hours: T 3:30-4:30pm, Th 12:45-1:45pm; CSE 2118

• Instructor’s Assistant: Sheila Manalo

– Email: shmanalo@ucsd.edu

– Phone: (858) 534-8873

• Discussion session: F 4:00-4:50am, CENTR 119

• TAs: (office hrs and emails to be updated at course website shortly)

Lu, Jingwei jlu@cs.ucsd.edu; Th 10-11am, Sunday 7-8pm
Mast, Ryan Andrew rmast@ucsd.edu; Wed 4-5pm, B250
Nath, Rajib Kumar rknath@ucsd.edu; Tu 11am-12pm
Supanekar, Ketan Pranav ksupanek@eng.ucsd.edu ; Mon 7-8pm

• Class Website:

– http://www.cse.ucsd.edu/classes/sp13/cse140-a/

• Grades: http://ted.ucsd.edu

mailto:tajana@ucsd.edu
mailto:shmanalo@ucsd.edu
mailto:jlu@cs.ucsd.edu
mailto:rmast@ucsd.edu
mailto:rknath@ucsd.edu
mailto:ksupanek@eng.ucsd.edu
http://www.cse.ucsd.edu/classes/sp13/cse140-a/
http://www.cse.ucsd.edu/classes/sp13/cse140-a/
http://www.cse.ucsd.edu/classes/sp13/cse140-a/
http://www.cse.ucsd.edu/classes/sp13/cse140-a/
http://www.cse.ucsd.edu/classes/sp13/cse140-a/
http://ted.ucsd.edu/

3

Course Description

• Prerequisites:
– CSE 20 or Math 15A, and CSE 30.

– CSE 140L must be taken concurrently

• Objective:
– Introduce digital components and system design concepts

• Grading
– Homeworks (~7): 10%

• HW picked up at beginning of the class, ZERO pts if late

– Three exams: #1 – 25%; #2 – 30%; #3 – 35%

• No makeup exams; exceptions only for:
– documented illness (signed doctor’s statement), death in the family

• Third exam will occur at the final time, but will be the same length
as the other midterms, so you will have 1hr 20min to complete it

• Regrade requests:
– turn in a written request at the end of the class where your work (HW or

exam) is returned

4

Textbook and Recommended Readings

• Required textbook:

– Digital Design &

Computer Architecture,

2nd Edition by David &

Sarah Harris

• Recommended textbook:

– Digital Design by F. Vahid, &

Contemporary Logic Design by

R. Katz & G. Borriello

• Lecture slides are derived from

the slides designed for all three

books

5

Why Study Digital Design?

• Look “under the hood” of computers

– Become a better programmer when

aware of hardware resource issues

• Everyday devices becoming digital

– Enables:

• Better devices: Better sound recorders,

cameras, cars, cell phones, medical

devices,...

• New devices: Video games, PDAs, ...

– Known as “embedded systems”

• Thousands of new devices every year

• Designers needed: Potential career

1995

Portable
music players

1997

Satellites

1999

Cell phones

2001

DVD
players

Video
recorders

Musical
instruments

2003

Cameras TVs ???

2005 2007

6

When Microprocessors Aren’t Good Enough

• With microprocessors so easy to
work with, cheap, and available,
why design a digital circuit?

– Microprocessor may be too slow

– Or too big, power hungry, or costly

(a)

Micro-

processor

(Read,

Compress,

and Store) Memory

Image Sensor

(b)

(c)

Sample digital camera task execution times (in

seconds) on a microprocessor versus a digital

circuit:

Read

circuit
Compress

circuit

Memory
Store

circuit

Image Sensor

Compress

circuit

Microprocessor

(Store) Memory

Image Sensor Read

circuit

Task Microprocessor Custom

Digital Circuit

Read 5 0.1

Compress 8 0.5

Store 1 0.8

Execution time

7

INSTRUCTION

MEMORY

READ

ADDRESS

INSTRUCTION

[31-0]

MUX

0

1 MUX

0

1

ALU
ZERO

RESULT

DATA

MEMORY

ADDRESS

WRITE

DATA

READ

DATA

MUX 0 1

ADDER
RESULT

ADDER
RESULT

PC

MUX

0

1

4

Sign

Extend
ALU

CONTROL

INSTRUCTION[15-0]

INSTRUCTION[5-0]

<< 2

CON TROL INSTRUCTION[31-26]

INSTRUCTION[25-21]

INSTRUCTION[20-16]

INST[15-11]

BRANCH
REG_DST

REG_WRITE ALU_SRC ALU_OP
MEM_READ,MEM_WRITE

M
E

M
_

T
O

_
R

E
G

REGISTERS

READ

REGIST

ER 1
READ

REGIST

ER 2
WRITE

REGIST

ER WRI

TE

DAT

A

READ

DATA

1

READ

DATA

2

MUX

1

0

JUMP

<< 2 I[25-0] JMP ADDRESS [25-0]

PC+4 [31-28] JMP ADDRESS [31-0]

The big picture

• We start with Boolean algebra Y = A and B

• We end with a hardware design of a simple CPU

• What’s next? CSE141 – more complex CPU architecture

8

Outline

• Number representations
– Analog vs. Digital

– Digital representations:

• Binary, Hexadecimal, Octal

– Binary addition, subtraction, multiplication, division

• Boolean algebra
– Properties

– How Boolean algebra can be used to design logic circuits

• Switches, MOS transistors, Logic gates
– What is a switch

– How a transistor operates

– Building logic gates out of transistors

– Building larger functions from logic gates

 Textbook chapter 1

9

CSE140: Components and Design Techniques

for Digital Systems

Number representations &

Binary arithmetic

Tajana Simunic Rosing

10

What Does “Digital” Mean?
• Analog signal

– Infinite possible values

• Ex: voltage on a wire

created by microphone

v
al

u
e

time

v
al

u
e

time

analog

signal

3 4 2 1

2 digital

signal

• Digital signal
– Finite possible values

• Ex: button pressed on a
keypad

0

1

2

3

4
Possible values:

1.00, 1.01, 2.0000009,

... infinite possibilities

Possible values:

0, 1, 2, 3, or 4.

That’s it.

11

How Do We Encode Data into Binary?

• Some inputs are inherently binary

– Button: not pressed (0),

 pressed (1)

• Some inputs are inherently digital

– Just need encoding into binary

– e.g., multi-button input: encode
red=001, blue=010, ...

• Other inputs are analog

– Need analog-to-digital conversion

0

button

1

g r een black blue r ed

0 0 0

r ed

0 1 0

g r een black blue

1 0 0

g r een black blue r ed

temperature
sensor

air

0 0 1 1 0 0 0 0

33

degrees

sensors and
other inputs

Digital System

actuators and
other outputs

A2D

D2A

analog
phenomena

electric
signal

digital
data

digital
data

electric
signal

digital
data

digital
data

Binary digIT = BIT

Has 2 values: 0 & 1

12

A/D conversion & digitization benefits

• Analog signal (e.g., audio)
may lose quality

– Voltage levels not
saved/copied/transmitted
perfectly

• Digitized version enables
near-perfect save/cpy/trn.

– “Sample” voltage at
particular rate, save
sample using bit
encoding

– Voltage levels still not
kept perfectly

– But we can distinguish
0s from 1s

time

V
o
lt

s

0
1

2

3

original signal

le
n
g

th
y
 t

ra
n
sm

is
si

o
n

(e
.g

,
ce

ll
 p

h
o
n

e)

time
0
1

2

3

received signal

How fix -- higher, lower, ?

le
n

g
th

y
 t

ra
n

sm
is

si
o

n

(e
.g

,
ce

ll
 p

h
o
n

e)

01 10 11 10 11

time

01 10 11 10 11

V
o
lt

s
digitized signal

time
0

1

a2d

V
o
lt

s

0
1

2

3
d2a

Let bit encoding be:

 1 V: “01”

 2 V: “10”

 3 V: “11”

time

Can fix -- easily distinguish 0s

and 1s, restore

0

1

Digitized signal not

perfect re-creation,

but higher sampling

rate and more bits per

encoding brings closer.

13

Encoding Text: ASCII, Unicode

• ASCII: 7- (or 8-) bit

encoding of each letter,

number, or symbol

• Unicode: Increasingly

popular 16-bit bit encoding

– Encodes characters from

various world languages

1010010

1010011

1010100

1001100

1001110

1000101

0110000

0101110

0001001

R

S

T

L

N

E

0

.
<tab>

S ymbol En c oding

1110010

1110011

1110100

1101100

1101110

1100101

0111001

0100001

0100000

r

s

t

l

n

e

9

 !
<spa c e>

S ymbol En c oding

What does this ASCII bit sequence represent?

1010010 1000101 1010011 1010100

14

Encoding Numbers

• Each position represents a
quantity; symbol in position
means how many of that
quantity
– Base ten (decimal)

• Ten symbols: 0, 1, 2, ..., 8, and 9

• More than 9 -- next position

– So each position power of 10

• Nothing special about base 10 --
used because we have 10
fingers

– Base two (binary)

• Two symbols: 0 and 1

• More than 1 -- next position

– So each position power of 2

2 4 2 3 2 2

1 0 1

2 1 2 0

10 4 10 3 10 2

5 2 3

10 1 10 0

15

Bases Sixteen & Eight

• Base sixteen
– nice because each position represents four

base two positions

– Used as compact means to write binary
numbers

– Basic digits: 0-9, A-F

– Known as hexadecimal, or just hex

• Base eight

– Used in some digital designs

– Each position represents three base two
positions

– Basic digits: 0-7

16 4 16 3 16 2

8 A F

8

1000 1010 1111

A F

16 1 16 0

0000

0001

0010

0011

0100

0101

0110

0111

0

1

2

3

4

5

6

7

h e x bina r y

1000

1001

1010

1011

1100

1101

1110

1111

8

9

A

B

C

D

E

F

h e x bina r y

Write 11110000 in hex

Write 11110000 in octal

16

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000
0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7 –0

–1

–2

–3

–4

–5

–6

–7

Sign and magnitude

• One bit dedicate to sign (positive or negative)

– sign: 0 = positive (or zero), 1 = negative

• Rest represent the absolute value or magnitude

– three low order bits: 0 (000) thru 7 (111)

• Range for n bits

– +/– 2n–1 –1 (two representations for 0)

• Cumbersome addition/subtraction

– must compare magnitudes

to determine the sign of the result

17

2s complement

• If N is a positive number, then the negative of N (its 2s complement or

N*) is bit-wise complement plus 1

– 7* is -7 : 0111 -> 1000 + 1 = 1001 (-7)

– -7* is 7: 1001 -> 0110 + 1 = 0111 (7)

+0

+1

+2

+3

+4

+5

+6

+7 –8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000
0110

0101

0100

0010

0001

2s complement addition and subtraction

18

+0

+1

+2

+3

+4

+5

+6

+7 –8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

19

Detecting Overflow: Method 1

• Assuming 4-bit two’s complement numbers, one can detect overflow
by detecting when the two numbers’ sign bits are the same but are
different from the result’s sign bit

– If the two numbers’ sign bits are different, overflow is impossible

• Adding a positive and negative can’t exceed the largest magnitude positive or
negative

• Simple circuit

– overflow = a3’b3’s3 + a3b3s3’

0 1 1 1

1 0 0 0

+ 0 0 0 1

sign bits

overflow

(a)

1 1 1 1

0 1 1 1

+ 0 1 0 0

overflow

(b)

1 0 0 0

1 1 1 1

+ 1 0 1 1

no overflow

(c)

If the numbers’ sign bits have the same value, which

differs from the result’s sign bit, overflow has occurred.

20

Detecting Overflow: Method 2

• Even simpler method: Detect difference between carry-in to sign bit
and carry-out from sign bit

• Yields a simpler circuit: overflow = c3 xor c4 = c3 c4’ + c3’ c4

0 1 1

1 1 1

1

1 0 0 1 0 0 0

+ 0 0 0 1

overflow

(a)

1 1 1

0 0 0

1

0 1 1 1

+ 0 1 0 0

overflow

(b)

1 0 0

0 0 0

0

1 1 1 1

+ 1 0 1 1

no overflow

(c)

If the carry into the sign bit column differs from the

carry out of that column, overflow has occurred.

21

Multiplication of positive binary numbers

• Generalized representation of multiplication by hand

22

Division of positive binary numbers

• Repeated subtraction

– Set quotient to 0

– Repeat while dividend >=

divisor

• Subtract divisor from dividend

• Add 1 to quotient

– When dividend < divisor:

• Reminder = dividend

• Quotient is correct

Dividend Quotient

101 - 0 +

10 1

11 - 1 +

10 1

1 10

Example:

• Dividend: 101; Divisor: 10

23

Summary of number representation

• Conversion between basis

– Decimal

– Binary

– Octal

– Hex

• Addition & subtraction in binary

– Overflow detection

• Multiplication

– Partial products

• For demo see:
http://courses.cs.vt.edu/~cs1104/BuildingBlocks/multiply.010.html

• Division

– Repeated subtraction

• For demo see:
http://courses.cs.vt.edu/~cs1104/BuildingBlocks/Binary.Divide.html

http://courses.cs.vt.edu/~cs1104/BuildingBlocks/multiply.010.html
http://courses.cs.vt.edu/~cs1104/BuildingBlocks/Binary.Divide.html

24

CSE140: Components and Design Techniques

for Digital Systems

 Boolean algebra

Tajana Simunic Rosing

Boolean algebra

– B = {0, 1}

– Variables represent 0 or 1 only

– Operators return 0 or 1 only

– Basic operators

• • is logical AND: a AND b returns 1 only when both a=1 and b=1

• + is logical OR: a OR b returns 1 if either (or both) a=1 or b=1

• ’ is logical NOT: NOT a returns the opposite of a (1 if a=0, 0 if a=1)

 AND OR NOT BUF

– Derived operators:

NAND NOR XOR XNOR

a

0

0

1

1

b

0

1

0

1

AND

0

0

0

1

a

0

0

1

1

b

0

1

0

1

OR

0

1

1

1

a

0

1

NOT

1

0

a • b a+b

a’

a

0

0

1

1

b

0

1

0

1

NAND a

0

0

1

1

b

0

1

0

1

NOR a

0

0

1

1

b

0

1

0

1

XOR a

0

0

1

1

b

0

1

0

1

XOR

a

0

1

BUF

a

26

Representations of Boolean Functions
2.6

a

a

b

F

F

Circuit 1

Circuit 2

(c)

(d)

English 1: F outputs 1 when a is 0 and b is 0, or when a is 0 and b is 1.

English 2: F outputs 1 when a is 0, regardless of b’s value
(a)

(b)

a

0

0

1

1

b

0

1

0

1

F

1

1

0

0

T he function F

Truth table

Equation 2: F(a,b) = a’

Equation 1: F(a,b) = a’b’ + a’b

27

Examples: Converting to Boolean Functions

• Convert the following English statements to a function

– Q1. answer is 1 if a is 1 and b is 1.

• Answer: F =

– Q2. answer is 1 if either of a or b is 1.

• Answer: F =

– Q3. answer is 1 if both a and b are not 0.

• Answer: F=

– Q4. answer is 1 if a is 1 and b is 0.

• Answer: F =

a

28

Example: Convert equation to logic gates

• More than one way to map expressions to gates

e.g., Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))

29

Boolean Duality

• Derived by replacing • by +, + by •, 0 by 1, and 1 by 0 &
leaving variables unchanged

X + Y + ...  X • Y • ...

• Generalized duality:

f (X1,X2,...,Xn,0,1,+,•)  f(X1,X2,...,Xn,1,0,•,+)

• Any theorem that can be proven is also proven for its
dual! Note: this is NOT deMorgan’s Law

Boolean Axioms & Theorems

Boolean theorems of multiple variables

32

Proving theorems

• Using the axioms of Boolean algebra (or a truth table):

– e.g., prove the theorem: X • Y + X • Y’ = X

– e.g., prove the theorem: X + X • Y = X

distributivity X • Y + X • Y’ = X • (Y + Y’)
complementarity X • (Y + Y’) = X • (1)
identity X • (1) = X 

identity X + X • Y = X • 1 + X • Y
distributivity X • 1 + X • Y = X • (1 + Y)
identity X • (1 + Y) = X • (1)
identity X • (1) = X 

33

Proving theorems example

• Prove the following using the laws of Boolean algebra:

– (X • Y) + (Y • Z) + (X’ • Z) = X • Y + X’ • Z

 (X • Y) + (Y • Z) + (X’ • Z)

identity (X • Y) + (1) • (Y • Z) + (X’ • Z)

complementarity (X • Y) + (X’ + X) • (Y • Z) + (X’ • Z)

distributivity (X • Y) + (X’ • Y • Z) + (X • Y • Z) + (X’ • Z)

commutativity (X • Y) + (X • Y • Z) + (X’ • Y • Z) + (X’ • Z)

factoring (X • Y) • (1 + Z) + (X’ • Z) • (1 + Y)

null (X • Y) • (1) + (X’ • Z) • (1)

identity (X • Y) + (X’ • Z) 

34

(X + Y)’ = X’ • Y’

NOR is equivalent to AND

with inputs complemented

(X • Y)’ = X’ + Y’

NAND is equivalent to OR

with inputs complemented

X Y X’ Y’ (X + Y)’ X’ • Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X’ Y’ (X • Y)’ X’ + Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems (perfect induction)

• Using perfect induction (complete truth table):

– e.g., de Morgan’s:

35

Completeness of NAND

• Any logic function can be implemented using just NAND

gates. Why?

– Boolean algebra: need AND, OR and NOT

36

Implement using only NAND

• F = X’Y + Z

37

Completeness of NOR

• Any logic function can be implemented using just NOR

gates. Boolean algebra needs AND, OR and NOT

38

Implement using only NOR

• F = X’Y + Z

40

 Combinational circuit building blocks:

Transistors, gates and timing

Tajana Simunic Rosing

41

Switches

• Electronic switches are the basis of

binary digital circuits

– Electrical terminology

• Voltage: Difference in electric potential

between two points

– Analogous to water pressure

• Current: Flow of charged particles

– Analogous to water flow

• Resistance: Tendency of wire to resist

current flow

– Analogous to water pipe diameter

• V = I * R (Ohm’s Law)

4.5 A

4.5 A

4.5 A

2 ohms

9V

0 V
9 V

+ –

42

The CMOS Switches
• CMOS circuit

– Consists of N and PMOS transistors

– Both N and PMOS are similar to basic switches

– Rp ~ 2 Rn => PMOS in series is much slower than NMOS

does not
conduct

0

conducts

1
gate

nMOS

does not
conduct

1
gate

pMOS

conducts

0

Silicon -- not quite a conductor or insulator:

 Semiconductor

• nMOS: pass 0’s well, so connect source to GND

• pMOS: pass 1’s well, so connect source to VDD

pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

Transistor Circuit Design

V
DD

A Y

GND

N1

P1

NOT

Y = A

A Y
0 1

1 0

A Y

A P1 N1 Y

0

1

CMOS Gates: NOT Gate

A

B

Y

N2

N1

P2 P1
NAND

Y = AB

A B Y
0 0 1

0 1 1

1 0 1

1 1 0

A
B

Y

A B P1 P2 N1 N2 Y

0 0

0 1

1 0

1 1

CMOS Gates: NAND Gate

pMOS

pull-up

network

output

inputs

nMOS

pull-down

network

Three input NOR gate

CMOS gate structure: Three-input NOR

Other CMOS Gates
Building a two-input AND gate

Transmission Gates

A B

EN

EN

• nMOS pass 1’s poorly

• pMOS pass 0’s poorly

• Transmission gate is a better switch

– passes both 0 and 1 well

• When EN = 1, the switch is ON:

– EN = 0 and A is connected to B

• When EN = 0, the switch is OFF:

– A is not connected to B

How to make CMOS gates

49

CMOS Example

50

51

A CMOS design example

• Implement F and F’ using CMOS: F=A*(B+C)

CMOS delay: resistance

• Resistivity

– Function of:

• resistivity r, thickness t : defined by technology

• Width W, length L: defined by designer

– Approximate ON transistor with a resistor

• R = r’ L/W

• L is usually minimum; change only W

52

Source: Prof. Subhashish Mitra

CMOS delay: capacitance & timing estimates

• Capacitor

– Stores charge Q = C V (capacitance C; voltage V)

– Current: dQ/dt = C dV/dt

• Timing estimate

– D t = C dV/ i = C dV / (V/Rtrans) = RtransC dV/V

• Delay: time to go from 50% to 50% of waveform

53

Source: Prof. Subhashish Mitra

Charge/discharge in CMOS

• Calculate on resistance

• Calculate capacitance of the gates circuit is driving

• Get RC delay & use it as an estimate of circuit delay

– Vout = Vdd (1- e-t/RpC)

• Rp ~ 2Rn

54

Source: Prof. Subhashish Mitra

55

Timing analysis: Inverter

x

0

1

F

1

0

F x

N O T

x

1

0

F = x’

1

0

1

0

1

0

1

0

1

0

Timing analysis in gates

x

y
F

OR

F
x

y

AND

1

0

F= x or y

1

0

x y

F’

y

x

1

0

y

x

x

y

1

0

F=x & y F’

x

0

0

1

1

y

0

1

0

1

F

1

1

1

0

x

0

0

1

1

y

0

1

0

1

F

1

0

0

0

Power consumption in CMOS

• Power = Energy consumed per unit time
– Dynamic power consumption

– Static power consumption

• Dynamic power consumption:
– Power to charge transistor gate capacitances

– Energy required to charge a capacitance, C, to VDD is CVDD
2

– Circuit running at frequency f: transistors switch (from 1 to 0 or vice
versa) at that frequency

– Capacitor is charged f/2 times per second (discharging from 1 to 0 is
free)

 Pdynamic = ½CVDD
2f

• Static power consumption
– Power consumed when no gates are switching

– Caused by the leakage supply current, IDD :

 Pstatic = IDDVDD

Power estimate example

• Estimate the power consumption of a tablet PC

– VDD = 1.2 V

– C = 20 nF

– f = 1 GHz

– IDD = 20 mA

P = ½CVDD
2f + IDDVDD

 = ½(20 nF)(1.2 V)2(1 GHz) +

 (20 mA)(1.2 V)

 = 14.4 W

59

Summary

• What we covered thus far:

– Number representations

– Boolean algebra

– Switches, Logic gates

– How to build logic gates from CMOS transistors

– Timing and power estimates

• What is next:

– Combinatorial logic:

• Minimization

• Implementations

